
ANALYTIC APPROACH TO THE COMPUTATION OF THE TEMPERATURE 

DISTRIBUTION IN MULTILAYER STRUCTURES UNDER HEATING BY 

CW SCANNING LASER RADIATION 

A. M. Pristrem, N. I. Danilovich, and 
V. A. Labunov UDC 535.21 

By using integral transform methods, an approach is developed to the solution of a 
problem on the temprature distribution in multilayer structures heated by cw scanning 
laser radiation, with phase transitions in the layers taken into account. 

The application of laser radiation for materials treatment requires accurate knowledge 
of the distribution of the temperature fields therein. However, at this time the problem of 
the temperature distribution in materials heated by laser radiation and with the phase tran- 
sitions and multidimensionality of the problem taken into account in general form has not 
been solved by either numerical or analytic methods although utilization of the former or 
latter methods permits solution of particular problems. Thus, heating nonlinearity, multi- 
laminarity of the heated structures and phase transitions can easily be taken into account 
by numerical methods [I, 2], however, multidimensionality of the problem being solved makes 
difficult their application. Moreover, numerical methods are not very graphic and, there- 
fore, are unacceptable from the viewpoint of solving the problem in general form. General 
and particular solutions of the above-mentioned problem have been obtained in a number of 
papers [5-9] by using analytic, principally integral transform [3, 4] methods, but without 
taking account of the phase transitions and the nonlinearity of the laser heating process. 
It should be noted that these two features make analytic solution most difficult, when it is 
a perturbation method [i0] ("adiabatic" method) is developed to take account of the tempera- 
ture dependence of the material thermal and optical properties, then no methods exist for 
taking exact account of the phase transitions to obtain an.:analytic solution. There are 
papers [ii, 12] in which an attempt is made to include the phase transitions in the tempera- 
ture distribution computation in particular cases in materials subjected to laser heating, 
however, the results obtained are only qualitative in nature. 

The purpose of the present paper is the development of an analytic approach to the com- 
putation of the temperature distribution in multilayer structures under heating by cw 
scanning laser radiation with phase transitions taken into account. 

We consider the thermal effect to be the main effect of laser action under material 
treatment by~cw scanning laser radiation, i.e., heating of the material zone subjected to 
the laser action occurs to the high temperatures at which phase transitions are initiated. 
We assume the phase transitions abrupt, i.e., to occur at a strictly defined temperature, 
called the phase transition temperature. The majority of phase transitions of the I and II 
kind possess precisely that property. Then phase transitions can be taken into account by 
successively solving M heat conduction boundary value problems where the results of solving 
the m-th problem is taken into account in the (m + l)-th problem. In this case the m-th 
boundary value problem of heat conduction is solved for the time interval in which no phase 
transformation is observed in the structures, i.e., separation of the whole problem into M 
boundary value problems is governed by the quantity of phase transformations and depends on 
the kind of phase transition. For phase transitions of the second kind the quantity of 
boundary value problems agrees with the number of phase transitions, while for phase transi- 
tions of the first kind there are twice as many boundary value problems as the number of 
phase transitions. An additional boundary value problem appears for each phase transition of 
the first kind because of the finiteness of the liberation (absorption) time of the latent 
heat and defines the transition zone actually existing for each phase transitions [13]. 
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Fig. I. Geometry of the problem of the tem- 
perature distribution in a multilayer struc- 
ture under treatment by cw scanning laser 
radiation. 

Let us consider a N=layered structure (Fig. i) on whose surface-scanning laser radiation 
is normally incident along the x axis at the velocity v. Each i-th layer of this multi- 
layered stucture of thickness h i is characterized in the m-th boundary value problem by its 
density Oim, specific heat rim, heat conduction coefficient Kim, complex refractive index 

nim = nim(l + JKim), phase transition temperatures Tik and latent heat of these transitions 

Hik (if the k-th phase transition in the i-th layer is of the second kind then Hik = 0). 

The algorithm to solve this problem, which we call the following point method, is the 
following. In the m-th boundary value problem the time t m is determined at which in the 

~--I 

following point {x~ 9,~ z~ =e.. ~=Xhi} ' selected such that the laser beam would be incident 

on it, the temperature of the k-th phase transition on the i-th layer surface would be reached 
and then by fixing the time t m found, the isothermal surface is found in the i-th layer that 
has Tim = Tik. I*i the next (m + !)-th problem, the thermal and optical properties of the 
i-th layer change at the next point and a new energetic source associated with the phase 
transition is also switched in. For each m-th boundary value problem the true temperature 
distribution in the N-layer of the structure will here be determined by the time interval 
[tm_1; tm] at the following point. 

In the generala case the temperature distribution in this problem will be described by 
the following system of nonlinear inhomogeneous partial differential equations: 

c i , ~ p f ~  Ot  Or Or q 

where  i = 1, 2, . . . ,  N; m = 1, 2, . . . ,  M; and Qimq i s  t h e  t h e r m a l  s o u r c e  a c t i n g  in  t h e  i - t h  
l a y e r  f o r  t h e  m - t h  p r o b l e m  where  t h e  s u b s c r i p t  q c o r r e s p o n d s  t o  t h e  k i n d  o f  t h e r m a l  s o u r c e  
(laser radiation to latent heat of the phase transition). The initial and boundary conditions 
for this problem can be represented as 

by considering that the upper surface of the structure being treated is heat insulated and 
its dimensions exceed greatly the laser beam dimensions with the ideality of the thermal 
contact between adjacent layers of the N-layered structure and thermostatting of its lower 
surface taken into account, where tm_ I (m = i) = to = 0 is the initial time of th eproblem 

under consideration and Ti,m_1(m = i) = Ti0 = T o is the initial temperature of the multi- 
layered structure under consideration 

3 T m  [ =0 ,  Te.,1,=,~ = 
c.3z lz=o 
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. O T m  [ OTi+l  m i 
=: ' ., ' TN'niZ=ZN --= To, 

Tllix,y.++ ~ --= To, Tzrnix=v(t_tm_a) ---- Tik , 

TMx=o( t~ ,_ l_  o = Tik, TMv=u,._~ = Tik, T~,,,lu=u~,_ 1 = Tih, 

where Ym-i, Y~-i; tm-i, t~-i are parameters governing the boundary of the k-th phase in the 

i-th layer of the m-th boundary value problem determined from the solution of the preceding 
(m - l)-th problem. 

Application of the Kirchhoff transformations [4] to the nonlinear differential equa- 
tions (i) permits writing the general solution of the problem under consideration by using 
integral transform methods [4, 5]. Indeed, by introducing the cited temperatures in the form 
of the functions 

rim K ~ ( T i m )  dT;m, (2)  Wi~ (T~m) = [ 
Timlt=tm_l~ ~ i m l t = t  m 1 

we write the general solution for them thus (for m = i and m ~ i, respectively): 

 77 +r ;' Wii = dT dx' dy' dz'Gi,i (x, y, Z, fix', y', Z', " 0 7  qrn ,  
1 % o  r = l  0 - - 0 0  ~ e o  z i _  i 

N Vt'm--I !tm--I zi 

r= 1 vim_ 1 grit-1 zi-1 

N t Vg'm--1 Ym--I zi 

where Girm(X , y, z, t/x', y' , z' , ~) is the Green's function of the m-th problem, which 
take the following form when the appropriate boundary conditions are taken into account 
(for m = i and m ~ i, respectively): 

, 1 exp{__[ !x - -x ' )Z+(y :y ' )2 ] l  • 
Cirl(x, Y, z, tlx', Y', z ,  ~ ) =  4~D~l (t - -  T) 4 D n ( t - - ~ )  JJ 

• ~ e x p { [ ~ l  ( t -- 'O} K~o ~ul(z)  XFra(z,), 
NziDri /=I 

O~, . (x ,  y, z, t/x', y', z', "0 = 
v (t'~_~ - t . . _ O ( y ' ~ _ ,  - v . . - O  

~] o~ ~ 2 9 D 
• ~ exp {--  [(a~,~Dm + ~';., r,,~ + i~2)( t - -  '~)1 } • 

s ~ l  p = l  l = 1  

X 

t ~-  �9 t • sin [~,,~ (x - vt , ._,)] "in [ ~  (x - -  vtm_O] sin [Tv,~ (Y - -  Y,.-O] X 

K..I t= ~,._i W~z,. (z) %I.~ (z'), 
Xsin ['~pm(Y - -  Ym-1)] NzraDrm 

where asm = XS/V(tm--I--tin-0; YVm = ~p/(Y'm--I--Ym-i); Drm = Krm/ermPrm is the thermal diffusivity 
N Zr 

l l y 2  t r 
of the r-th layer in the m-th problem, and Non= ~[(Krm]l-Gn)/Drm]- _ ~ rtrn(z)dz is the 

r = l  Zr_ 1 
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norm of the m-th problem when seeking the eigenvalues $~m and eigenfunctions #rLm(Z). 

It should be noted that the formalism represented for taking account of the phase 
transitions in the computation of temperature fields in multilayered structures heated by 
laser radiation can be used just for thin-layered structures for which the new phase pene- 
trates deep into the layer during its formation in the i-th layer. The criterion of thin- 
!aminarity of the structure will here be determined by the temperature gradients along the z 
axis in the layers and it can be represented in the form 

r162 1/2 

h~ ~ \ - T O T - /  ' 

where D~ is the value of the thermal diffusivity coefficient of the i-th layer undergoing 
im 

the phase transition in the m-th problem at the phase transition temperature, and d x is the 
laser beam dimension along the laser radiation scanning direction. 

For complete generality of the problem considered we set up the form of the thermal 
sources Qimq" A thermal source in the i-th layer of the m-th problem, due to laser radia- 
tion, is represented thus 

Q ~ ,  = l[x ---  v (t - -  t ~ _ O ,  y l  h ~  (z) ( 4 )  

Aim 

where I[x - v(t - tm_1), y] is the space-time distribution of the laser radiation intensity 

over the laser beam section in the m-th problem. Here the function fim(Z) describes the law 
of laser radiation energy adsorption over the depth of the i-th layer that absorbs this radia- 
tion in the m-th problem. In the case of a layer transparent to laser radiation this func- 
tion is a constant. It is related to the electrical field intensity ~n of the incident laser 
radiation and the electrical field intensity in the i-th layer of the structure by the 
following relationship 

hm (z) = n im I~i~l----~2 

Using the method [14] for computing ~im in the case of a plane electromagnetic wave 
~=~0exp (--]o0t) , normally incident on the surface of a N-layered structure~ we obtain an 
analytic expression for the electrical field in the i-th layer 

2 / exp 

{ [ (  . -  • 1--rh-la~li-~.,~-~exp(--e~-,,r~hi-1)exp ] n~_l,.,-=--hi-l-l- 

+,,,_..,+~,_,.,_.)]} ]{oxp[---<z-z,_,,lo~.r,(~,~ J L, ~o, /,u 

~.,..e~.[-~ (,,, +z,-.)] o.. [, (..,'" ~,,,,+z,-.O]}+ 
2 

- i -  I'('.-'" + -= ~ ~._,,.~x. o.-. ~.)o.. ~.,,.+~._,,.)] 
, ~i  .=1 -'" 2 h , - t - % . ~ + 1 - t - ~ ,  1 ,  I 

1 

• fl +l"r+~T'-~"exp(--~ 
r~'l--2~Ir,r+1~r_1,rexp(--~rmhr)expf](nrmw2hr-~-q)r,r+t-~-Xr_,,r)] 

" ,_.,...~,_..~ [, (n,.~,~,+~,,,+,+~,_,,,)] " (s) 
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v [exp( r (z-- z~-l)) exp [ ] ( nzm 2~--~-o (z - -  Zi-1)) ] -]- 
I 

exp [ 2 - ~ o  ( ~ -f" z~ - -  z) , (5) 

where ~i-l,i and Xi-l,i are the amplitude and phase of the electromagnetic wave transmission 
coefficients on the interface between the (i - l)-th and i-th media, while qi-~,i and ~i-l,i 
are the amplitude and phase of the electromagnetic wave reflection coefficient from the 
interface between these media, where all these quantities are associated with the optical 
constants of the (i - l)-th and i-th media by the following relationships: 

2 'Tt--1, i = 

tg  ~,_~,, = 

2 

tg q~i-l,i = 

4n~-l ,m (1 2 

(ni-l,m -4- him) 2 Jr- (rt i-l .mNi-l .m -~- n~mZim) z 
n$m(Mi-,.,m--Mim) 

(ni_Lm+nim)-~xi-l.m(ni-l.mg~-l.m-l-n~mz,m)' 
2 

(n~_,.m + n~m) ~" "t- (ni-l,,nxi-l.m -4- nirn~im) 2 
2ni-a,mnira (• - -  ~im) 

2 2 ~ x 2 n 2' xi~) " ( m - l , m - -  ram) + ( m - l , z  , - t  , z  - -  ,,. 

The expression (5) consists of two components, of which the first takes account of inter- 
ference in the i-th layer and the second in the remaining layers. From the viewpoint of 
material treatment by laser radiation, interference effects are important primarily for the 
first absorbing layer. If the thickness of this layer satisfies the inequality 

4,6~o ( 6 ) 
hi~'4~• ' 

then interference effects therein and in successive layers can be neglected since the laser 
radiation intensity diminishes more than 100 times upon emerging from this layer. 

The Aim in (4) is the characteristic length of the transformation of laser radiation 
energy into thermal energy in the i-th layer of the structure in the m-th problem, which, 
taking photoexcited carrier diffusion into account, is determined by the expression 

(7) 
Aim = 1 _1_ ] / 2 D .  i ~ r e  t ~m k ~% ] -t- V'2D~ im~ec, im n.'-----~ ~im , " 

where <tel im is the relaxation time of the photoexcited current carrier energy determined by 
the electron-phonon interaction, D aim is the photoexcited current carrier diffusion coeffi- 
cient, Eg im and ~rel im are the forbidden bandwidth of the i-th layer material and the 
current carrier recombination time in this layer, respectively, that are characteristic just 
for semiconductor materials. The second and third components in (7) permit taking account of 
the physical features of the absorption process, associated with the dynamic of converting 
laser radiation energy into thermal energy. 

The thermal source associated with the phase transition can be represented in the 
approximation under consideration as 

Q~m2 =+--PimH~kVYm(y) 8[x--v(t--tm_O], 

where 6(~) is the Dirac delta-function, and Ym(Y) = i for y E [Ym-i, Y~-I] and Ym(Y) = 0 for 
the remaining values of y. The plus and minus signs correspond to liberation or absorption 
of the latent heat of th ephase transition, respectively. 

We consider application of the developed formalism to an example of a two-layered Si/SiO 2 
(quartz) structure on which cw scanning laser radiation of power P0 acts with a Gaussian 
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intensity distriution over the laser beam section at a wavelength strongly absorbed in the 
silicon layer so that condition (6) is satisfied, and passing freely through the quartz 
substrate, where we consider the criterion (3) satisfied also so that the silicon layer 
subjected to the laser radiation melts in its whole thickness while the quartz substrate 
does not melt. Then the problem is separated into three boundary value problems, where 
there will 5eno thermal sources n the quartz substrate, while the thermal source in the 
silicon layer, due to the laser radiation, will have the form 

Qlmt= P~ ~Rlm)exp[  ( x - - v t ) ~  y 2 ]  
zr=%Al,~ r 2~ ry2 exp (-- =lmZ), 

where Rim =i - nim~1 is the energetic coefficient of laser radiation reflection, and r x 
and ry are elliptical radii of the laser spot along the respective coordinate axes. More- 
over, an additional heat source due to absorption of the latent heat of the transition 

Q~t  = p , 2 H ~ v r z  (y) 6 (x - -  v (t - -  t,)) 

will act in the silicon layer in the area of the phase transition in the second problem. 

Let us place the tracking point at the origin. To obtain analytic expressions for the 
temperature in the silicon layer and in the quartz substrate we linearize the problem by 
using averaging over their thermal and optical properties with respect to the temperature 
in the temperature range from T o to T Si. The expression to find the time t z when the tem- 

me 

perature at the tracking pint reaches the silicon melting point is written as: 

Wn~, I :Wl l (O ,  0 , O, t l ) - - P ~  (w)2 ] 
_= 4Dn (II--T) --}-rx 2 • 

I 

%1 d% X [4Dn (/1-- T) -J- r2x] -I/2 [4Dn (t 1 __ r -j- r~]- 7"~  exp [-- ~P~(h--,-c)l ~ 
l~l 

where 

q) ll /~11([3~ ' ~-- ~ I D , I  ) [_l/b_1 tg ht 

Nl 1 __ hlCOS-2 t]'/mllf 1~ll h l )  Kll]/=O2Dn 

=I~ [t - cos~ \ V ~  

+ h2 sin -z ( ~'+ h2) Kelt,=o 

and $c is found from the solution of the transcendental equation 

The reduced temperature Wim is easily related to the real temperature Tim by using (2). 
Thus, for silicon [15] 

"/(11 (Tll) = 
Tn  - -  Tc 

where K c an d T c are empirical constants so that 

Wn = (To -- T~) In { Tn -- Te § ) 
Kfter this the equation to find the isothermal surface can be written 

(x - w)  ~ 
j exp -- 

WIIjI.1 : Wll(X , y, Z, tl)= Po(l--RI~) 4 D H ( t ~ - - w ) q - - r x  
n -- [4Dn (tl - -  ,T) -}- r2x) 1/2 • 

( 8 )  
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Fig. 2. Stationary temperature distribution profiles relative 
to the moving laser beam on the two-layered Si/SiO 2 structure 
surface in the laser radiation scanning direction (a) and per- 
pendicular to it (b) for three scanning speeds: 0.01 (i); 
0.i (2) and i m/sec (3); T, K; x, y, Bm. Segments are 2~x and 
2~y: :. 
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Fig..3. Domains of the transition zone i and melting zone 2 
on the two-layer Si/SiO 2 structure surface for two scanning 
rates 0.01 (a) and 0.i m/sec (b) computed in the stationary 
mode. Dashes show boundary of laser radiation spot. 

exp 4Dn(tl~)q_r ~ exp[--13Y,(h--T)] rp'I cos/ f~a z~ X [4011 (t, - -~)  -[- r~] 1/2 = Nzl ~y_D__~n ] d% 

outside of which we have the true temperature distribution. 

Now, solving the second problem we determine the time t 2 when total melting of the 
silicon layer occurs at the tracking point. Setting RI~Rn, Dn~Dn, c,~c1~, P~Pn, 
~I~ ~11, we obtain 

w,,~.~ = w . ( o ,  o, o, t~)= w . ( o ,  o, o, t~) 

t; exp[__[~2(t2__~)]tg~,_l/b_~x.~ }exp[ 
X 

Hl~fh..v 
4-l/-~ • 

(v@ ] • 
4D1~ ( t2 -- "~) 

Yl 

where B~ % 6s Ns % Ns 
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Then fixing t 2, we determine the surface bounding the domain of liquid silicon 

Win:.1 = Wlo.(x, y, z, t2)= Wu(x ,  y, z, t2) 

• exp [ 

• - 

err ( ~ = =  (x -- w) ~ ~erf Yl -- y ~ ' g -- Yl 

It should be noted that Wz2 is also related to Tz2 by the relationship (8), however 
Tl2 is not the true temperature since the true temperature remains constant and equal to 
the silicon melting point from the time t I to the time t 2 at the tracking point. 

Solving the third problem we obtain the real temperature distribution in the liquid 
silicon domain. 

Represented in Fig. 2 are pure temperature distribution profiles on the structure 
surface, computed by using an electronic computer, for and perpendicular to the laser 
radiation scanning direction, respectively, for three scanning rates where the computations 
are presented in a coordinate system coupled to the moving laser beam in the stationary 
mode when the temperature distribution relative to the laser beam is invariant. It is 
assumed here that: P0 = 6 W; r x = ry = 7.5.10 -s m; 10 = 1.06"10 -6 m; T o = 600 K; Rzl = 0.4; 
T c = 99 K; K c = 2.99.10 ~ W/m; Cll = 0.8 "103 J/(kg'K); Pzl = 2.3"103 kg/m3; T~ i = 1683 K; 
h I = 1.10 -6 m; D11 = 2"i0 -s ma/sec; ~zl = 106 m-l; K2~ = 2 W/(m.K); D2z = 10 -6 m2/sec; 
c21 = 0.88"103 J/(kg'K); 021 = 2.2"103 kg/mS; h2 = 4"10-4 m, which correspond to experiment 
conditions [16]. 

Represented in Fig. 3 are the domains of the laser spot, the transition zone, and the 
melt zone on the structure surface, computed in the stationary melting mode, for two laser 
radiation scanning rates. 

Analysis of the results obtained shows that the width of the total melt domain and 
transition zone agrees to within 10% accuracy with the experiment results [16], which indi- 
cates the method is correct. 

Therefore, the analytic method developed to solve temperature distribution problems in 
multilayered structures heated hycw scanning laser radiation permits taking account of phase 
transformations in the layers and can be used to model laser material treatment processes. 
It should be noted that since the problem being solved in general form is not stationary, 
the formalism elucidated is suitable also for temperature distribution computations in 
multilayered structures treated by laser radiation pulses. MOreover, the sphere of problems 
solvable by this method is extended by replacing the laser radiation by other energetic 
radiation (electronic, ioni% photonic, etc.). To do this, (4) must be replaced by the 
appropriate energy absorption law for these radiations over the bulk of the i-th layer. 

NOTATION 

nim, refractive index of the i-th layer of the multilayered structure in the m-th boun- 
dary-value problem; <im , extinction coefficient of the i-th layer of the structure in the 
m-th problem; I0, laser radiation wavelength: m0, electromagnetic field frequency of the 
laser radiation; ~, Planck's constant; j = ~, imaginary unit; and aim = 4~/I0 Kimnim, 

laser radiation absorption coefficient in the i-th layer of the structure. 
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SOME FORMULAS OF OPERATIONAL CALCULUS 

FOR STEP FUNCTIONS GENERATED BY SPECIAL 

FUNCTIONS 

Yu. A. Brychkov and A. P. Prudnikov UDC 517.942.82:536.24 

One-dimensional Laplace transforms of some step functions are presented. 

Formulas of operational calculus for step functions play an important role in discrete 
analysis, in particular, in the solution of various equations [i, 2]. In the present paper, 
which is a continuation of [3], we present a table of new operational relationships for step 
functions that are special functions of the function Itl, the integer part of t. The 
relationships are presented in two columns: the function f(Itl) in the left hand column and 
its Laplace transform F(p) in the right hand column, where 

1 e-p 
F (p) = j f ([t]) exp ( - -  pt) dt = _ _  ~" [ (~) e -~p .  

o P h=o 

Here f([t]) = f(k) for k < t < k + i, k = 0, i, 2 .... ; Re p > 0, unless the contrary is 
indicated. The notation employed is that commonly used in the mathematical literature (see, 
for example, [4-7]). 

TABLE i. Laplace Transforms of Some Step Functions 

No. .  f (It]) F (p) 

1 - - e - t~  
xtq r ([q, a) 

x[t] 
- -  r ([tl, a) 

Itl! 

x[q+~r~ ([tl + 2) 

x2[q~ (2 [/1) 

] - - e - P  

p 

1 I ep 
p 

n x  e - -3p/2  _ e - -p /2  
2 p 

- -  [exp(xe-P) E i ( - - a @  ~ - ) - - E i ( - - a ) ] ,  

laxe-Pl < 1 

- - E l ( a x e - P - - a ) ,  a ( 1 - - x e - P ) > O  

- - [ C @ @ ( I - - x e - P ) ] ,  rxe-P I < l  

ctg ( ~ x e - - P / 2 ) ,  [xe--P/21< I 
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